Nicho	blas Sharp ^a , William F. McDonough ^{a, b} , Brian W. Ticknor ^c , Richard D. Ash ^b , Philip M. Piccoli ^b , Dana T. Borg ^b
	^a Department of Chemistry & Biochemistry
	University of Maryland
	College Park, MD 20742
	USA
	^b Department of Geology
	University of Maryland
	College Park MD 20742
	US A
	USA
	^c Chemical Sciences Division
	Oak Ridge National Laboratory
	1 Bethel Valley Road, MS 6415
	Oak Ridge TN 37830
	USA
	*Corresponding authors:
	Nicholas Sharp
	Department of Chemistry & Biochemistry
	University of Maryland
	College Park, MD 20742
	USA
	Tel: (301)405-1830
	Fax: (301)405-3597
	nsharp@umd.edu
	William F. McDonough
	Department of Geology
	University of Maryland
	College Park, MD 20742
	USA
	Tel: (301) 405-5561
	Fax: (301) 405-3597
	mcdonoug@umd.edu
	order Trinitite * Nuclear Forencies * Leser ablation and solution industivaly sounded mass
leyw()	mus. Infinite - Nuclear Forensics - Laser-abration and solution inductively coupled mass
pecut	

46 Abstract

47 Analysis of post-nuclear detonation materials provides information on the type of device 48 and its origin. Compositional analysis of trinitite glass, fused silicate material produced from the 49 above ground plasma during the detonation of the Trinity nuclear bomb, reveals gross scale 50 chemical and isotopic heterogeneities indicative of limited convective re-homogenization during 51 accumulation into a melt pool at ground zero. Regions rich in weapons grade Pu have also been 52 identified on the surface of the trinitite sample. The absolute and relative abundances of the 53 lanthanoids in the glass are comparable to that of average upper crust composition, whereas the 54 isotopic abundances of key lanthanoids are distinctly non-normal. The trinitite glass has a nonnormal Nd isotope composition, with deviations of $-1.66 \pm 0.48 \epsilon$ (differences in parts in 10⁴) in 55 142 Nd/ 144 Nd, +2.24 ± 0.32 ε in 145 Nd/ 144 Nd, and +1.00 ± 0.66 ε in 148 Nd/ 144 Nd (all errors cited at 56 2σ) relative to reference materials: BHVO-2 and Nd-Ames metal. Greater isotopic deviations 57 are found in Gd, with enrichments of +4.28 \pm 0.72 ϵ in $^{155}Gd/^{160}Gd$, +4.19 \pm 0.56 ϵ in 58 156 Gd/ 160 Gd, and +3.59 ± 0.37 ε in 158 Gd/ 160 Gd compared to BHVO-2. The isotopic deviations 59 are consistent with a ²³⁹Pu based fission device with additional ²³⁵U fission contribution and a 60 thermal neutron fluence between 0.97 and 1.4 x 10^{15} neutrons/cm². 61

63 Introduction

64 Today, a well-documented chemical and isotopic database is needed to assign origin and 65 provenance to materials from a nuclear event. Characterizing the fissile material and 66 composition of an unknown device are central efforts of nuclear forensics which can be 67 challenging in the case of an urban event, given the myriad of debris types possible from the 68 local environment. In the case of a nuclear device, non-natural isotopic fingerprints have the 69 potential to provide insights into the history, source, and origin of interdicted materials. It is 70 critical to observe and understand the effects of a fission event on less-complicated material 71 before embarking on analyzing complex urban debris. Analyses of trinitite, fused silica-glass 72 from the Trinity test event, presents nuclear forensic investigators with ideal post-detonation 73 material where the composition of the nuclear device and source material are well-known, 74 enabling validation of testing methods designed to determine a device's original makeup. In this 75 study, we present chemical and isotopic data on trinitite and compare our results with Trinity's 76 known characteristics.

In the early hours of 16 July 1945 the atomic age began with the Trinity nuclear bomb detonation at the White Sands Proving Ground, New Mexico. The bomb, a ²³⁹Pu implosion device, produced a fireball of 10⁴ K and a debris cloud that reached a height of 11 km within minutes, and eventually as high as 21 km [1]. The debris cloud, consisting of material from the detonation tower, the bomb itself, and adjacent desert sand, precipitated onto the desert floor and cooled rapidly, yielding a glassy surface, trinitite, that surrounded the explosion site.

The four varieties of trinitite include: green glass trinitite, pancake trinitite, red trinitite, and
bead trinitite. All types originate from arkosic sand and are composed of quartz, microcline,
albite, muscovite, actinolite, and calcite [1]. The green glass variety (analyzed in this study)

consists of glass with no observable unaltered original sand material. This sample was likely
produced from the combination of proximal sand near ground zero melting into a glass and
falling material from the debris cloud [2]. However, due to remediation of the test site, the exact
location relative to ground-zero for this trinitite sample is unknown.

90 Trinitite contains fissile materials, neutron activated materials, and pieces of the detonation 91 tower and the bomb itself, such as the uranium tamper and lead casing [2-4]. Recently uranium 92 and lead isotopic signatures of the bomb have been investigated [5, 6]. Here we report on the 93 chemical and isotopic composition of trinitite, both spatially resolved laser ablation and solution 94 analyses, using inductively coupled plasma mass spectrometry. During detonation, fission 95 products of both light and heavy isotopes (e.g., 80-105 amu and 130-160 amu, respectively) are 96 produced. The tail of the heavy isotope product distribution includes the middle members of the 97 lanthanoids. The relative isotopic abundances of lanthanoids produced via fission differ from 98 those occurring naturally. The mixing of fission lanthanoids with natural material produces 99 measurable enrichments and depletions in isotopic abundances when compared to natural 100 material. The resultant altered isotopic abundances can be used to identify the device's fissile 101 material, given a successful deconvolution of the fissile and natural isotopic compositions. 102 In this study the concentration of major element oxides and lanthanoids were determined 103 using a combination of electron probe micro-analysis (EPMA) and laser-ablation inductively-104 coupled mass spectrometry (LA-ICP-MS). The isotopic composition of Gd and Nd were 105 determined by sample dissolution followed by chromatographic separation of the elements of 106 interest using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The 107 utility of rapid analysis of a post-detonation material via EPMA and LA-ICP-MS provides an

initial qualitative screening that readily identifies specific targets for more thorough analyses, in
 this case using MC-ICP-MS for high-precision isotopic ratio determinations.

110

111 Experimental methods

112

113 The trinitite sample studied is entirely glass and contains little to no original sand. The green 114 glass has a smooth top which corresponds to the surface facing the atmosphere during 115 deposition. Deeper into the sample are vesicles with increasing frequency with greater depth. 116 Samples are highly heterogeneous in composition with vesicles accounting for approximately 117 33% of the total trinitite volume [7]. A \sim 1 g piece was broken off of the bulk pool glass and 118 subsequently split into two fractions by hand. Both were mounted in epoxy: one piece was 119 mounted with the smooth surface exposed; the other piece was mounted perpendicular to the 120 smooth surface (cross section; Fig 1).

121

122 Electron microprobe

123

The JXA-8900 SuperProbe was used to determine major element concentrations via
wavelength dispersive spectrometry (WDS). The analyses were carried out with a 10-20 μm spot
size, accelerating voltage of 15 kV, and a 20 nA cup current. Data was recalculated using a ZAF
algorithm using orthoclase (K₂O, Al₂O₃, SiO₂), rhodonite (MnO), and kakanui hornblende (CaO,
MgO, FeO, TiO₂) as primary standards with Yellowstone rhyolite as a secondary standard.
Backscattered electron (BSE) images were also acquired.

131 Sample digestion and chromatography

133	For Nd and Gd isotope analysis a 0.1 g piece of trinitite underwent an acid digestion
134	procedure consisting of a mixture of concentrated HNO3 and HF in addition to 100 μL of HClO4
135	in a sealed 15 mL Teflon beaker. Two 0.05 g BHVO-2 SRMs underwent the same procedure in
136	separate beakers. An analytical blank was also prepared and treated with the same chemistry
137	procedure and resulted in Nd and Gd blank concentrations of 6 pg. Teflon distilled acid was
138	used for sample digesting, chromatography, and sample analysis.
139	Sample digestion was performed on a hotplate set to 180°C for 72 hours. Subsequently
140	the beakers were opened and the solutions were dried to a hard residual cake; 6 M HCl was
141	added to each beaker, and they were then resealed and heated for an additional 24 hours.
142	Following this heating, the beakers were opened and allowed to dry again, and the 6M HCl step
143	was repeated. After the 3 rd drying step 2 mL of quartz distilled 2.5 M HCl was added to the
144	samples.
145	Lanthanoids were separated from the bulk matrix with a 12cm x 2cm Dowex AG50W x8
146	400 mesh cation exchange column in H^+ form. The 2 mL solution of 2.5 M HCl was added to
147	the column and 50 mL of 2.5 M HCl wash was added and followed by 45 mL of 4.5 M HNO ₃ ,
148	with the last 35 mL collected as the REE cut. The REE cut was then dried down and
149	reconstituted in 0.5 mL of 0.15 M α -hydroxyisobutyric acid (α -HIBA) buffered at pH 4.7 using
150	NH ₄ OH.
151	Individual lanthanoids were separated using a 30 cm x 0.5 cm column filled with Dowex
152	AG50W x8 400 mesh cation exchange resin treated with concentrated NH_4OH to convert the
153	resin from H^+ to the NH_4^+ form. The 0.5 mL sample solution was loaded and followed by a

154	series of elution steps with α -HIBA isolating the Nd and Gd cuts. The Nd and Gd cuts were then
155	dried down and then dissolved with 2 mL of 0.8 M HNO ₃ . Isotope analysis samples were
156	prepared by taking 300 μ L of the cut solution diluted with 1.2 mL of 0.8 M HNO ₃ .
157	
158	LA-ICP-MS and MC-ICP-MS
159	
160	The laser ablation analyses were conducted on a single collector, sector field, Element 2
161	(Thermo-Finnigan, Bremen, Germany) ICP-MS coupled to a 213 nm wavelength laser ablation
162	system (UP213, New Wave Research) with operating conditions detailed in Table 1.
163	Optimization of the instrument included tuning the ion lenses and ICP-MS torch position to
164	maximize the signals at masses 43, 139 and 178 while maintaining $^{238}U^{16}O/^{238}U \le 0.2\%$.

165 Individual analysis included a 30s background acquisition followed by 30s spot analysis.

An external standard of NIST610 was analyzed in duplicate at the beginning and end of each data acquisition of ~16 spots analyses of unknowns. Differences in beam diameter were due to higher concentrations of lanthanoids in NIST610 compared to trinitite. The absolute concentration of Ca obtained from EMPA analyses functioned as an internal calibrant for data processing with LAMTRACE [8]. For laser ablation sites not constrained by EPMA determined Ca concentration, the laser ablation data was corrected by normalizing the ablation yields of

172 unconstrained Ca sites to the ablation yields of EPMA constrained Ca sites. Plutonium

173 concentrations are based on the assumption that Pu ablates at approximately the same efficiency

as U. This correction allowed for the determination of a concentration/signal ratio for U at each

site and to apply that factor to the Pu signal to determine a first-order approximation of Pu

176 concentration.

177	Isotope analyses for Nd and Gd were conducted at the University of Maryland Geology
178	(UMD) department and the Savannah River National Laboratory (SRNL) using Nu Plasma HR
179	MC-ICP-MS (Nu Instruments, Wrexham, UK) with operating parameters listed in Table 2. The
180	instrument at UMD was coupled to an Aridus I (Cetac Technologies, Omaha, NE) desolvating
181	nebulizer while a DSN-100 desolvating nebulizer (Nu Instruments) was coupled to the mass
182	spectrometer at SRNL. Measurement parameters were identical at each location with 5 blocks of
183	20 10 second integration points with a mandatory 30 second background determination at the
184	beginning of each block.
185	Isobaric interferences for Nd consisted of Ce and Sm at masses: 142, 144, 148, and 150.
186	During sample acquisition, ¹⁴⁰ Ce remained stable at \leq 1.3mV while ¹⁴⁷ Sm remained at
187	$\leq 1 \times 10^{-2}$ mV; the contribution from Sm isobars was negligible, whereas interference from Ce
188	required a correction to ¹⁴² Nd using ¹⁴² Ce/ ¹⁴⁰ Ce = $0.1256[9]$.
189	Instrument induced mass fractionation for Nd was corrected on-line by normalizing to
190	146 Nd/ 144 Nd = 0.7219. Normalizing using 0.7219 is not ideal due to fission production of 146 Nd
191	and ¹⁴⁴ Nd, however, the comparable fission isotopic ratio of 0.6667 permits us to make
192	comparisons using the original 0.7219 value for mass fractionation correction. In the case of Gd
193	a concentration standard was mass fractionation corrected using ${}^{156}\text{Gd}/{}^{160}\text{Gd} = 0.9361$ and the
194	mass bias factor from this correction was used to correct the BHVO-2 and trinitite data. Due to
195	low signals of ¹⁵² Gd and ¹⁵⁴ Gd (80mV and 8mV, respectively) those isotopes are not reported.
196	

197 **Results**

198

199 A vertical cross section through a ~ 1 cm thick piece of trinitie glass reveals chemical and 200 physical heterogeneities. The sample top surface (i.e., that facing the atmosphere) and subjacent 201 region contains silicate glass populated with quartz grains that show signs of incipient melting. A 202 vertical gradient in the amount and size of vesicles with increasing sample depth into the puddle 203 glass is observed (Fig. 2). The lower portion of the cross section (3.0-5.5mm below the surface) 204 contains a higher abundance of partially-melted quartz grains. The incipiently melted material 205 present on the bottom of the sample most likely remained on the desert floor and was not 206 incorporated into the debris cloud, resulting in less overall melting and more vesicles. The 207 quartz-rich zones appear more pronounced lower in the cross-section. 208 Major oxide compositions determined using EPMA are listed in Table 3. There is 209 marked bulk compositional heterogeneity of the cross section of trinitite glass (Fig. 2+3) with 210 CaO and FeO concentration increasing with depth and K₂O and Al₂O₃ concentrations decreasing 211 with depth. We observed positive correlation of FeO vs CaO and K_2O vs Al_2O_3 and negative 212 correlation of FeO vs Al_2O_3 and CaO vs K_2O (Fig. 3). Lanthanoid concentrations obtained via 213 LA-ICP-MS (Table 4) on average show that the trinitite glass is comparable to the average upper

crust composition (Fig. 4) [10], however, some domains show marked depletion, possibly
reflecting lithological variations in the available desert floor and are likely due to high calcite
and quartz contributions.

Analyses at selected sites show ²³⁸U and ²³⁹Pu (Table 4) concentrations vary by an order of magnitude and are not correlated with other elemental concentrations in the sample. In general, all sites analyzed exhibited a ²⁴⁰Pu/²³⁹Pu ratio of ≤ 0.03 , which is indicative of weapons

220	grade Pu [12], a strong marker for the fissile material used in the device. In-situ laser ablation
221	also identified isotopic anamolies in Gd isotopic ratios (Fig. 5) which provided strong evidence
222	that more rigorous analyses of the trinitite sample were warranted and would likely yield detailed
223	information about the fission device.
224	The Nd isotopic composition for trinitite is distinctive from both the BHVO-2 and
225	Nd-Ames metal solution (Table 5) reference materials, and shows deviations in ¹⁴² Nd/ ¹⁴⁴ Nd,
226	$^{145}\text{Nd}/^{144}\text{Nd}$, and $^{148}\text{Nd}/^{144}\text{Nd}$ which are -1.66 ϵ , +2.24 ϵ , and +1.00 ϵ respectively, with ϵ being
227	deviations in parts in 10^4 . Likewise, the Gd isotopic composition of trinitite (Table 3) also
228	differs from natural materials in ¹⁵⁵ Gd/ ¹⁶⁰ Gd, ¹⁵⁶ Gd/ ¹⁶⁰ Gd, and ¹⁵⁸ Gd/ ¹⁶⁰ Gd with enrichments of
229	4.28 ε , 4.19 ε , and 3.59 ε respectively.

230

```
Discussion
231
```

232

233 Vertical, textural, and chemical gradations in the trinitite glass are consistent with rapidly 234 quenched melt material that was not sufficiently molten long enough for thermal convection to 235 efficiently mix and homogenize the melt pool. The top 1 mm is suggestive of the source material 236 primarily consisting of potassium feldspar, KAlSi₃O₈, which agrees with one of the possible 237 glass forms identified in previous studies [13]. The smooth texture of the sample's surface alone 238 is not sufficient to determine how the sample was produced. The top-most material could either 239 have been original desert floor which was heated to melting from the thermal radiation of the 240 blast, or it could consist of molten droplets raining from the sky and pooling over the desert floor 241 [2,13]. The primarily potassium feldspar composition of the analyzed region does not imply that 242 the top material is solely potassium feldspar, instead, it shows that an original crystal of

potassium feldspar was melted to such a degree that it is not visually observable from itssurroundings.

245 The observable increase in vesicle frequency with cross-sectional depth could be due to 246 degassing of water from the beneath the desert floor. The topmost layer of trinitie likely 247 consists of material that rained out from the debris cloud, which was degassed and vesicle free. 248 The initial blast and early deposited material on the desert floor heated pre-existing local water to 249 evaporation. The deposition of airborne material incorporated desert floor sediments and acted 250 as an insulator while the top-most layer quenched to a glass. Degasing likely occurred deeper in 251 the soil with the vapors escaping upward to the quenched surface, becoming trapped and creating 252 vesicles of increasing size with depth in the sample. An alternative explanation by Belloni *et al.* 253 [2] proposed that immediately following the detonation the sand around ground zero is heated to 254 its boiling point. Roughly 2 seconds after the explosion, molten droplets begin to rain down on 255 the boiling sand, forming the top-most portion of trinitite. Trinitite is then instantly quenched by 256 cool air being sucked toward ground zero.

257

258 Nd and Gd isotopic composition

259

260 Deviations in the isotopic ratios of Nd and Gd in trinitite are dominated by two nuclear 261 processes: neutron absorption and fission product generation. Neutron absorption reactions, 262 specifically thermal (~0.025 eV) neutron capture, will decrease the abundance of an isotope that 263 has a large neutron capture cross-section, with an accompanying increase in the capture products, 264 while isotopes with comparatively low cross sections would have a reduced probability for 265 neutron capture, thus remaining largely unaffected. Thermal neutrons are specifically mentioned here as fast neutrons (greater than 0.5 MeV) have a lower probability of being captured by nuclei
due to their higher energy and must undergo several kinetic collisions with other nuclei before
becoming thermalized and able to participate in capture reactions. Fast neutrons can also
participate in nuclear reactions outside of neutron capture, however, our calculations specifically
require thermal neutrons and, therefore, we are constrained to reporting the thermal neutron
fluence of Trinity and not the total neutron fluence.

None of the Nd isotopes are major neutron absorbers, thus neutron absorption reactions do not play a prominent role in any Nd isotopic deviations found in trinitite. However, two Gd isotopes, 155 Gd and 157 Gd, have large capture cross-sections for thermal neutrons, $6x10^4$ b and 2.5x10⁵ b respectively. Their resulting capture products, 156 Gd and 158 Gd, exhibit very small capture cross-sections for thermal neutrons, 1.8 b and 2.2 b respectively, which are too low to experience significant depletions, resulting in enrichments in 156 Gd and 158 Gd which can be directly correlated with depletions in 155 Gd and 157 Gd.

279 Fission also changes the Nd and Gd isotopic ratios due to decay of neutron-rich fission products. Trinity's ²³⁹Pu fast fission does not immediately produce significant stable Nd and Gd 280 281 isotopes (highest yield being 0.1% and .001% respectively [14]), however, after subsequent beta 282 decays, stable isotopes are produced with yields found in Table 6. Fission produced isotope 283 yields alone are not sufficient to predict deviations in isotopic ratios. To predict isotopic ratio 284 deviations the difference between the isotopic composition of fissioned material and natural 285 material must be taken into account. If a fission event produces isotopes in similar abundances to natural material at most a small deviation will be observed. For example, ¹⁴⁶Nd/¹⁴⁴Nd in 286 natural material is assumed to be 0.7219, however, in ²³⁹Pu fission the ratio is 0.6669, resulting 287 288 in a maximum deviation of -762ϵ . However, if the fission event produces isotopes that are

greatly different than natural material a large deviation will be observed. For example,

- 155 Gd/ 160 Gd in most natural material is assumed to be 0.6768, however, the ratio produced in
- 291 239 Pu fission is 13.13, resulting in a maximum deviation of +184,000 ε .

Maximum deviations can only be observed when the fission event was of such magnitude 292 293 that the element's natural mass has been overwhelmed with fission produced material and has a 294 pure fission composition. Thus, both the yield and isotopic composition of the fissioned material 295 must be considered when predicting deviations in isotopic composition of fallout material. 296 Lower concentrations of lanthanoids in natural material are more sensitive to both fission isotope 297 generation and neutron capture due to the lower number of atoms available to dilute the 298 fissionogenic signature. Therefore, we would expect to observe the most pronounced altered 299 isotopic abundances in elements that are both low abundance in nature and produced in high 300 yields via fission; both criteria that are met by Nd and Gd.

301 There is a noticeable difference in time domains of neutron lifetimes (on the order of tens 302 of seconds [15]) and time necessary for beta decay of fission products to reach stable lanthanoid 303 isotopes (hours-Table 6). This difference in time enables a simplifying assumption that neutron 304 capture only occurred on naturally occurring material, essentially no fission product lanthanoids 305 were available or participated in neutron capture. For example, ¹⁵⁷Gd has an independent fission yield of 3×10^{-5} % whereas the majority of mass 157 isotopes are produced as 157 Sm ($t_{1/2} = 8.03$ 306 307 minutes) with a yield of $\sim 0.1\%$. It takes approximately 160 minutes for all ¹⁵⁷Sm to beta decay 308 to ¹⁵⁷Gd, by which time neutrons are no longer available for capture. Immediately produced 309 lanthanoid fission product nuclei can also be assumed to not participate in neutron capture 310 reactions due to their neutron heavy structure and relatively low capture cross sections in 311 comparison to the naturally stable lanthanoids. The lanthanoids produced through fission with

high immediate yields are so neutron rich that they all have short half-lives, on the order of mintues, and undergo β^2 decay. With the neutron pulse being on the order of seconds and the half-lives on the order of minutes it can be assumed that none of the lanthanoids immediately produced via fission absorb any neutrons. Therefore, the only lanthanoids able to absorb neutrons were already present in the natural source material.

Having neutron absorption occur prior to β-decay of neutron-rich fission products enables
an iterative modeling process to determine the total neutron fluence the trinitite sample
experienced. The isotopic composition of Gd and Nd can also be used to determine whether ²³⁵U
or ²³⁹Pu was the fissile material, based on their distinctive fission product isotopic composition.
The iterative process begins by determining the total number of atoms for each isotope initially
present and then determining the effect of unknown neutron fluence on the isotopic composition
using the following equation:

324
$$N_{x+1}^{c} = N_{x+1}^{\circ} + \left(N_{x}^{\circ} * \sigma_{c}^{x} - N_{x+1}^{\circ} * \sigma_{c}^{x+1}\right) * \Phi$$
(1)

where N_x° represents the original atoms of isotope x, N_{x+1}^c the resulting atoms of isotope x+1, σ_c^x is the neutron capture cross section of isotope x in cm², and the total neutron fluence is Φ .

Fission products are introduced according to their cumulative yields using the generalequation:

329
$$N_x^f = N_x^c + \rho_x^{cum} * Fission Events$$
 (2)

where N_x^f and N_x^c representspost-fission and post-neutron capture atoms, respectively, and ρ_x^{cum} represents the cumulative fission yield of isotope x. The number of fission events is increased until the modeled isotopic ratios are of similar magnitude as the measured ratios from trinitite. Both equation steps are repeated in an iterative process until a best fit line has been reached. As previously mentioned, a low capture cross section for thermal neutrons results in Nd isotopes having low sensitivity to neutron fluence, and therefore are not ideal for determining the level of neutron fluence produced by the Trinity detonation. With the larger neutron capture cross-sections in Gd, the neutron fluence can be back-calculated based on Gd isotopic ratios. The neutron fluence can be calculated in two ways: the iterative process previously detailed or by using equation 3:

340
$$\Phi_N = \frac{\left[\left(\frac{158_{Gd}}{157_{Gd}} \right)_t - \left(\frac{158_{Gd}}{157_{Gd}} \right)_n \right]}{\sigma_{157} \left[1 + \left(\frac{158_{Gd}}{157_{Gd}} \right)_n \right] + \left[0.25\sigma_{155} \left(\frac{158_{Gd}}{157_{Gd}} \right)_n * \left(\frac{155_{Gd}}{156_{Gd}} \right)_n \right]}$$
(3)

Equation 3 was derived by Eugster et al. [16], with Φ_N representing thermal neutron fluence in n/cm², the subscripts t and n represent trinitite and natural, and σ_x is the thermal neutron capture cross section for their respective isotopes.

The iterative process gives a fluence value of $1.4\pm0.2 \times 10^{15}$ n/cm² (all errors cited at 2σ), 344 345 which is on the lower end of the values predicted by Parekh et al. [17], while calculations based on Gd ratios results in a fluence of $9.468\pm0.002 \times 10^{14} \text{ n/cm}^2$. The differing uncertainties are a 346 347 product of calculating the total mass of Gd experimentally measured ion current from the faraday 348 cup for the iterative process. This signal has a greater uncertainty due to fluctuations in the ion 349 beam compared to the uncertainty of the isotope ratio pairs, which constrain the ratio calculation 350 method. The discrepancy between these two fluence values could be due to the ratio method not 351 accounting for fission product interference, which would reduce the impact of neutron capture on ¹⁵⁵Gd/¹⁵⁶Gd and ¹⁵⁷Gd/¹⁵⁸Gd given the greater production of ¹⁵⁵Gd and ¹⁵⁷Gd compared to ¹⁵⁶Gd 352 353 and ¹⁵⁸Gd respectively.

Trinity's fissile material can be determined by looking at the isotopic ratios of Gd (Fig. 6). The isotopic ratios, which would be obtained from fissioning either ²³⁵U or ²³⁹Pu, are

similar with regards to 156 Gd/ 160 Gd, 157 Gd/ 160 Gd, and 158 Gd/ 160 Gd. However, a noticeable 356 depletion in ¹⁵⁵Gd/¹⁶⁰Gd is observed relative to modeled predictions. Based on scaling ²³⁹Pu and 357 235 U fissionogenic isotopic ratios to trinitite, 235 U fission would have resulted in +12 ε 358 enrichment in 155 Gd/ 160 Gd while 239 Pu would have resulted in +5.8 ε . Both possible fissile 359 360 materials show an enrichment above what is actually observed in this trinitite sample for ¹⁵⁵Gd, however, the lower limit for ²³⁹Pu is within 3 standard deviations of the measured value whereas 361 235 U is ~22 standard deviations. The closer agreement observed for 239 Pu is a strong indicator 362 that 239 Pu was the fissile material as opposed to 235 U. 363 364 The isotopic ratios of Nd show clear signs of fissionogenic contribution due to enrichments in 145 Nd/ 144 Nd and 148 Nd/ 144 Nd and depletions in 142 Nd/ 144 Nd (Fig. 7). As 365 366 previously mentioned. Nd isotopic deviations occur solely due to yield of fission isotopes which peaks at 144 Nd (Table 6). The depletion in 142 Nd/ 144 Nd is due to the lack of production of 142 Nd 367 compared to ¹⁴⁴Nd. The presence of stable ¹⁴²Ce along the decay path of mass 142 fission 368 products results in no additional production of ¹⁴²Nd with the exception of the small likelihood of 369 142 Pr production (10⁻⁶%) or direct production of 142 Nd (10⁻¹⁰%). The scaling fit for the initial 370 fissile material shows strong agreement for ²³⁹Pu based on ¹⁴²Nd/¹⁴⁴Nd, ¹⁴⁵Nd/¹⁴⁴Nd, and 371 146 Nd/ 144 Nd. However, 148 Nd/ 144 Nd fits between the 239 Pu and 235 U fission curves along with 372 150 Nd/ 144 Nd, which is not distinguishable from natural material. The greater uncertainty in 148 Nd 373 374 and ¹⁵⁰Nd isotopic ratios is due to their lower abundances and large mass differences compared 375 to the mass fractionation correction ratio, and could explain the deviation of trinitite values from the ²³⁹Pu fission curve. 376

377 Conversely, ¹⁵⁰Nd/¹⁴⁴Nd does not show any signs of enrichment, which was expected 378 given that ²³⁹Pu fission production would yield an isotopic ratio of 0.269±5, greater than the measured natural isotopic ratio of 0.236353±9 (Table 5) for Nd-Ames metal. Assuming ²³⁹Pu fission, trinitite should exhibit enrichment in ¹⁵⁰Nd/¹⁴⁴Nd compared to natural. Possible explanations for this discrepancy include loss of fission produced ¹⁵⁰Nd or a greater production of ¹⁴⁴Nd than expected. However, due to the agreement with the other isotopic ratios with the ²³⁹Pu model the ¹⁴⁴Nd excess is unlikely and the preferential loss of ¹⁵⁰Nd compared to the other isotopes is also unlikely to occur. Neutron capture on ¹⁵⁰Nd isotopes is unlikely due to the 1 b neutron capture cross section of ¹⁵⁰Nd.

Another possible explanation is production of Nd through ²³⁵U fast neutron fission, which 386 would give 150 Nd/ 144 Nd and 148 Nd/ 144 Nd isotopic ratios of 0.182±6 and 0.140±3 387 respectively [14], lower than the ratios produced from fast fission of ²³⁹Pu which are 0.269±5 388 and 0.449 ± 9 respectively. The trinitite ¹⁴⁸Nd/¹⁴⁴Nd and ¹⁵⁰Nd/¹⁴⁴Nd ratios plot between the ²³⁹Pu 389 and ²³⁵U fast fission predictions. Recent studies have also shown that other isotopic systems plot 390 between both ²³⁹Pu and ²³⁵U fission [18]. The presence of notable isotopic alterations caused by 391 ²³⁵U fission suggests that ²³⁵U fission contributed significantly to the overall fission events from 392 Trinity, in addition to the ²³⁹Pu which was the primary fissile material. Our model isn't able to 393 assign a quantified value to the ²³⁵U fission contribution, but our results arein agreement with 394 395 modeled predictions made by Semkow et al. 2007 [19] and noted discrepancies in predicted ¹⁵⁵Eu and ¹³⁷Cs ratios by Bellucci et al. [18]. Evidence for ²³⁵U fission is not apparent in Gd 396 isotopes, due to the difference in yields of Gd through ²³⁵U and ²³⁹Pu fission. Fission of ²³⁹Pu 397 produces approximately 10x the amount of Gd per fission event compared to ²³⁵U (Table 6), 398 therefore, the ²³⁹Pu events obfuscated any possible ²³⁵U contribution. 399

400 The ability to determine the fissile material used in a nuclear weapon from the isotopic 401 composition of rare earth elements in post-detonation material provides investigators with a method that is more resistant to artificial emulation with fissile material or common highly
radioactive fission products. Results from this method can be used in tandem with other
indicators of a fission device to verify or bring into question a previous hypothesis concerning
the fissile material used in the device. Focusing specifically on Trinity, the combination of the
presence of ²³⁹Pu and the non-normal isotopic compositions of Nd and Gd provides compelling
evidence that Trinity was a primarily ²³⁹Pu based fission device with additional fission
contribution from ²³⁵U.

409

410 Conclusion

411

412 The trinitite sample analyzed in this study has significant variability with depth in terms 413 of major element compositions and vesicle abundance. Signs of the fission event are apparent in 414 the isotopic composition of Nd and Gd with clear enrichments and deviations in normally invariable ratios. Comparison of trinitite Nd isotopic composition with ²³⁹Pu and ²³⁵U fission 415 predictions yielded evidence of fission of not only ²³⁹Pu, which the device was intended to 416 fission, but also significant fission of ²³⁵U. Detecting the contribution of unexpected fissile 417 418 material in Trinity highlights the level of detail that can be obtained using careful sampling and 419 analysis of post-detonation material. Taking advantage of rapid analysis times achievable with 420 EPMA and LA-ICP-MS, a first pass analysis of any intercepted or post-detonation nuclear 421 material can be performed quickly while also identifying suitable samples for more in-depth 422 analyses.

423

425 Acknowledgments

427	We would like to thank the Smithsonian National Museum of Natural History for the
428	trinitite sample, A. Fahey for discussion over trinitite properties and sample analysis techniques,
429	and Savannah River National Laboratory for the use of their mass spectrometer. NS adds a
430	special thanks to Dr. Mignerey for her assistance in understanding neutron and fission
431	interactions. Funding was provided by the Plasma Lab at the University of Maryland, the
432	Department of Geology, and the University of Maryland.
433	

434 References

435	1.	Eby N, Hermes R, Charnley N, Smoliga JA (2010) Trinitite—the atomic rock.
436		<i>GeolToday</i> 26(5):180-185
437	2.	Belloni F, Himbert J, Marzocchi O, Romanello V (2011) Investigating incorporation and
438		distribution of radionuclides in trinitite. J of Environ Radioact 102(9):852-862
439	3.	Fahey AJ, Zeissler CJ, Newbury DE, Davis J, Lindstrom RM (2010) Postdetonation
440		nuclear debris for attribution. Proc Natl Acad of Sci USA 107(47):20207-20212
441	4.	Bellucci J, Simonetti A (2012)Nuclear forensics: Searching for nuclear device debris in
442		trinitite-hosted inclusions. J Radioanl Nucl Chem 293(1):313-319
443	5.	Bellucci JJ, Simonetti A, Wallace C, Koeman EC, Burns PC (2013) Isotopic
444		fingerprinting of the world's first nuclear device using post-detonation materials. Anal
445		Chem 85(8):4195-4198
446	6.	Bellucci JJ, Simonetti A, Wallace C, Koeman EC, Burns PC (2013) Lead isotopic
447		composition of trinitite melt glass: Evidence for the presence of Canadian industrial lead
448		in the first atomic weapon test. Anal Chem 85(15):7588-7593
449	7.	Hermes RE, Strickfaden WB (2005) A new look at trinitite. Nucl Weapons J (2):2-7.
450	8.	Jackson S (2008) LAMTRACE data reduction software for LA-ICP-MS. Laser Ablation
451		ICP-MS Earth Sci Curr Pract and Outst Issues, Mineral Assoc of Can, Short Course Ser
452		40:305-307
453	9.	Chang T-L, Qian Q-Y, Zhao M-T, Wang J, Lang Q-Y (1995) The absolute isotopic
454		composition of cerium. Int J Mass Spectrom and Ion Process 142(1-2):125-131
455	10.	Rudnick RL, Gao S (2003) Composition of the Continental Crust. Treatise Geochem 3:1-
456		64
457	11.	Barth MG, McDonough WF, Rudnick RL (2000) Tracking the budget of Nb and Ta in
458		the continental crust. Chem Geol 165(3-4):197-213
459	12.	Moody K, Hutcheon I, Grant P (2005) Nuclear Forensic Analysis. Boca Raton, FL
460	13.	Ross CS (1948) Optical properties of glass from Alamogordo, New Mexico. Am Mineral
461		33:360-362
462	14.	Chadwick MB, Herman M, Obložinský P, Dunn ME, Danon Y, Kahler AC, Smith DL,
463		Pritychenko B, Arbanas G, Arcilla R, Brewer R, Brown DA, Capote R, Carlson AD, Cho
464		YS, Derrien H, Guber K, Hale GM, Hoblit S, Holloway S, Johnson TD, Kawano T,
465		Kiedrowski BC, Kim H, Kunieda S, Larson NM, Leal L, Lestone JP, Little RC,
466		McCutchan EA, MacFarlane RE, MacInnes M, Mattoon CM, McKnight RD,
467		Mughabghab SF, Nobre GPA, Palmiotti G, Palumbo A, Pigni MT, Pronyaev VG, Sayer
468		RO, Sonzogni AA, Summers NC, Talou P, Thompson IJ, Trkov A, Vogt RL, van der
469		Marck SC, Wallner A, White MC, Wiarda D, Young PG (2011) ENDF/B-VII.1 Nuclear
470		data for science and technology: Cross sections, covariances, fission product yields and
471		decay data. Nucl Data Sheets 112(12):2887-2996
472	15.	Bainbridge, KT (1976) Trinity, (No. LA-6300-H), Los Alamos Scientific Lab., NM
473		(USA).
474	16.	Eugster O. Tera F. Burnett DS. Wasserburg G (1970) Isotopic composition of gadolinium
475		and neutron-capture effects in some meteorites. J Geophys Res 75(14):2753-2768
476	17.	Parekh PP. Semkow TM, Torres MA, Haines DK, Cooper JM, Rosenberg PM, Kitto ME
477		(2006) Raioactivity in Trinitite six decades later. J. Environ. Radioact. 85: 103-120
478		

479	18.	Bellucci JJ, Wallace C, Koeman EC, Simonetti A, Burns PC, Kieser J, Port E,
480		Walczak T (2013) Distribution and behavior of some radionuclides associated with the
481		Trinity nuclear test. J Radioanal Nucl Chem 295(3):2049-205719. Semkow TM, Parekh
482		PP, Haines DK (2006) Modeling the effects of the Trinity test. Appl. Model Comput.
483		Nucl. Sci. 142-159
484		
485		

- 486 <u>Figure Legends</u>
- 487

Fig. 1 BSE image of the two pieces of trinitite mounted in epoxy. The piece on the top is the
smooth surface of a piece of trinitite while the bottom image is the cross sectional piece in Figure
1. The boxes are LA-ICP-MS sites, the circles are EPMA sites, and the triangles are sites that
were analyzed with both methods

- 491 were analyzed 492
- 493 Fig. 2 Cross section BSE image of trinitite showing an increase in size and number of vesicles
 494 with depth and EPMA sites marked E1-7. Darker shades of gray represent partially melted quartz
- 495 grains. Uncertainty in the concentration measurements are on the order of $\pm 1\%$ (2 σ)
- 496
- 497 **Fig. 3** Correlation of major elements in trinitite cross section. Uncertainties here are $\pm 1\%$ (2 σ) 498 and are smaller than the data points 499
- **Fig. 4** Comparison of lanthanoid concentrations obtained with LA-ICP-MS on trinitite. Values are normalized to upper crust values from Rudnick and Gao [10]. Loess (grey region), a glacial
- 502 dust which is a naturally produced sample of the average upper continental crust [11], are
- 503 compared to trinitite. Average trinitite values (black squares) represent average from n=7
- analyses, with L1 and L9 plotted separately. Uncertainties shown are 2σ . The Gd values for L1 and L9 are below detection and are therefore empty markers
- 506
- Fig. 5 Isotopic composition of Gd analyzed with LA-ICP-MS. Mixing line represents line from
 ²³⁹Pu fission production to natural composition. Icelandic basalt (BIR) was used as a secondary
 standard during analyses
- 510
- **Fig. 6** Graph of ε (10⁴) deviation in trinitite for Gd isotopes normalized to ¹⁶⁰Gd. Uncertainty reported as 2σ . Trinitite and BHVO-2 were corrected for mass fractionation via sample-standard bracketing with a concentration standard corrected to ¹⁵⁶Gd/¹⁶⁰Gd = 0.9361. Shaded regions
- 514 refer to 2σ uncertainty with ²³⁵U model uncertainty comparable to ²³⁹Pu
- 515 516 **Fig. 7** Graph of ε (10⁴) deviation in trinitite for Nd isotopes, normalized to ¹⁴⁴Nd, from an 517 average value of Nd-Ames metal and BHVO-2. Uncertainty reported as 2σ . BHVO-2 ratios are 518 shown compared to the averaged natural value to show instrumental precision. Interferences in 519 BHVO-2 and trinitite were observed at ¹⁴⁰Ce signal <1 mV and ¹⁴⁷Sm<10⁻³ mV. Results for 520 ¹⁴²Nd are corrected for ¹⁴²Ce interference. All isotopic ratios are corrected to 521 ¹⁴⁶Nd/¹⁴⁴Nd = 0.7219. Shaded regions refer to 2σ uncertainty with ²³⁵U model uncertainty
- 522 comparable to ²³⁹Pu

- 524
- 525 526
- 520 527
- 528
- 529
- 530

Fig. 1 BSE image of the two pieces of trinitite mounted in epoxy. The piece on the top is the
smooth surface of a piece of trinitite while the bottom image is the cross sectional piece in Fig. 1.
The boxes are LA-ICP-MS sites, the circles are EPMA sites, and the triangles are sites that were
analyzed with both methods.

- **Fig. 2** Cross section BSE image of trinitite showing an increase in size and number of vesicles
- 543 with depth and EPMA sites marked E1-7. Darker shades of gray represent partially melted quartz
- 544 grains. Uncertainty in the concentration measurements are on the order of $\pm 1\%$ (2 σ).
- 545

549 Fig. 3 Correlation of major elements in trinitite cross section. Uncertainties are $\pm 1\%$ (2 σ) and

550 are smaller than the data points.

552 553

Fig. 4 Comparison of lanthanoid concentrations obtained with LA-ICP-MS on trinitite. Values are normalized to upper crust values from Rudnick and Gao [10]. Loess (grey region), a glacial dust which is a naturally produced sample of the average upper continental crust [11], are compared to trinitite. Average trinitite values (black squares) represent average from n=7 analyses, with L1 and L9 plotted separately. Uncertainties shown are 2σ . The Gd values for L1

and L9 are below detection and are therefore empty markers.

561 562

Fig. 5 Isotopic composition of Gd analyzed with LA-ICP-MS. Mixing line represents line from

²³⁹Pu fission production to natural composition. Icelandic basalt (BIR) was used as a secondary
 standard during analyses.

Fig. 6 Graph of ε (10⁴) deviation in trinitite for Gd isotopes normalized to ¹⁶⁰Gd. Uncertainty reported as 2σ . Trinitite and BHVO-2 were corrected for mass fractionation via sample-standard bracketing with a concentration standard corrected to ¹⁵⁶Gd/¹⁶⁰Gd = 0.9361. Shaded regions refer to 2σ uncertainty with ²³⁵U model uncertainty comparable to ²³⁹Pu.

Fig. 7 Graph of ε (10⁴) deviation in trinitite for Nd isotopes, normalized to ¹⁴⁴Nd, from an average value of Nd-Ames metal and BHVO-2. Uncertainty reported as 2σ. BHVO-2 ratios are shown compared to the averaged natural value to show instrumental precision. Interferences in BHVO-2 and trinitite were observed at ¹⁴⁰Ce signal <1 mV and ¹⁴⁷Sm<10⁻³ mV. Results for ¹⁴²Nd are corrected for ¹⁴²Ce interference. All isotopic ratios are corrected to ¹⁴⁶Nd/¹⁴⁴Nd = 0.7219. Shaded regions refer to 2σ uncertainty with ²³⁵U model uncertainty comparable to ²³⁹Pu.

New Wave Nd: YAG laser parameters					
Wavelength	213 nm				
Energy density	2-3 J cm ⁻²				
Pulse duration	5 ns				
Carrier gas	Не				
Ablation pattern	Single spot				
Laser beam size (diameter)	40 μm (NIST 610), 80 μm (Trinitite)				
Repetition rate	7 Hz				
Thermo Finnigan Element2 I	CP-MS parameters				
RF power	1250 W				
HV	8 kV				
Scan optimization	Speed (dynamic peak-hopping mode)				
Mass resolution	300 (m/Δm)				
Detection mode	Analog and counting				
Sampler cone	1.0 mm Al-alloy				
Skimmer cone	0.7 mm Al-alloy				
Cool gas flow	16 L min ⁻¹ Ar				
Auxiliary gas flow	$1.5 \mathrm{L} \mathrm{min}^{-1} \mathrm{Ar}$				
Sample gas flow ^a	$0.8 \mathrm{L} \mathrm{min}^{-1} \mathrm{Ar}$				
Carrier gas flow ^a	$0.6 \mathrm{L min}^{-1} \mathrm{He}$				

Table 1 The instrumental operation conditions used for LA-ICP-MS analysis

^aThese gas flows were coupled at a T-junction prior to the plasma torch.

586

Dwell time

172, 173, 174, 175, 176

5 ms at masses: 43, 137, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164

10ms at masses: 165, 166, 167, 168, 169, 170, 171,

587	Table 2 The instrumental	operation	conditions us	sed for MC-	-ICP-MS analysis
-----	--------------------------	-----------	---------------	-------------	------------------

Nu Plasma HR MC-ICP-MS parameters ^a				
RF power	1300 W			
Reflected power	5 W			
Accelerating voltage	4000 V			
Cool gas flow	13 L min ⁻¹ Ar			
Auxiliary gas flow	1 L min ⁻¹ Ar			
Sweep gas flow ^b	2.75 L min ⁻¹ Ar			
N ₂ gas	$10 \text{ mL min}^{-1} \text{ N}_2$			
Aspiration rate	$50 \ \mu L \ min^{-1}$			
Integration time	10s			
Blocks	5			
Background time	30s between blocks			
Nu Plasma HR2 MC-ICP-MS parameters ^c				
RF power	1300 W			
Reflected power	0 W			
Accelerating voltage	6000 V			
Cool gas flow	$13 \mathrm{L} \mathrm{min}^{-1} \mathrm{Ar}$			
Auxiliary gas flow	$0.8 \mathrm{L} \mathrm{min}^{-1} \mathrm{Ar}$			
Sample gas flow ^d	$4.5 \text{ Lmin}^{-1} \text{ Ar}$			
Aspiration rate	$100 \ \mu L \ min^{-1}$			
Integration time	10s			
Blocks	5			
Background time	30s between blocks			
^b Gas flows were set using an Aridus I ^c Savannah River National Laboratory – Gd isotopes ^d Gas flows were set using a DSN-100				

E1aE2E3E4E5E6E7E8E9Oxide wt%SiO264.7464.9665.4367.7268.1465.5257.1065.0396.42TiO20.080.030.080.540.450.370.920.62b.d. ^b Al2O318.8119.4618.2115.2513.8617.3113.2511.820.15FeO1.150.281.053.152.532.716.572.550.16MnO0.02b.d. ^b 0.020.070.060.060.090.05b.d. ^b MgO0.390.030.441.301.061.002.740.940.06CaO0.381.274.626.667.007.1015.158.680.32Na2O2.142.612.052.091.822.211.712.040.20K2O10.2510.327.923.553.323.172.323.050.30Total97.9698.9699.82100.3398.2499.4599.8594.7897.61										
Oxide wt%SiO2 64.74 64.96 65.43 67.72 68.14 65.52 57.10 65.03 96.42 TiO2 0.08 0.03 0.08 0.54 0.45 0.37 0.92 0.62 $b.d.^b$ Al2O318.8119.4618.2115.2513.8617.3113.2511.82 0.15 FeO 1.15 0.28 1.05 3.15 2.53 2.71 6.57 2.55 0.16 MnO 0.02 $b.d.^b$ 0.02 0.07 0.06 0.06 0.09 0.05 $b.d.^b$ MgO 0.39 0.03 0.44 1.30 1.06 1.00 2.74 0.94 0.06 CaO 0.38 1.27 4.62 6.66 7.00 7.10 15.15 8.68 0.32 Na2O 2.14 2.61 2.05 2.09 1.82 2.21 1.71 2.04 0.20 K_2O 10.25 10.32 7.92 3.55 3.32 3.17 2.32 3.05 0.30		E1 ^a	E2	E3	E4	E5	E6	E7	E8	E9
SiO2 64.74 64.96 65.43 67.72 68.14 65.52 57.10 65.03 96.42 TiO2 0.08 0.03 0.08 0.54 0.45 0.37 0.92 0.62 $b.d.^b$ Al2O3 18.81 19.46 18.21 15.25 13.86 17.31 13.25 11.82 0.15 FeO 1.15 0.28 1.05 3.15 2.53 2.71 6.57 2.55 0.16 MnO 0.02 $b.d.^b$ 0.02 0.07 0.06 0.06 0.09 0.05 $b.d.^b$ MgO 0.39 0.03 0.44 1.30 1.06 1.00 2.74 0.94 0.06 CaO 0.38 1.27 4.62 6.66 7.00 7.10 15.15 8.68 0.32 Na2O 2.14 2.61 2.05 2.09 1.82 2.21 1.71 2.04 0.20 K ₂ O 10.25 10.32 7.92 3.55 3.32 3.17 2.32 3.05 0.30	Oxide w	vt%								
TiO_2 0.080.030.080.540.450.370.920.62b.d.b Al_2O_3 18.8119.4618.2115.2513.8617.3113.2511.820.15FeO1.150.281.053.152.532.716.572.550.16MnO0.02b.d.b0.020.070.060.060.090.05b.d.bMgO0.390.030.441.301.061.002.740.940.06CaO0.381.274.626.667.007.1015.158.680.32Na2O2.142.612.052.091.822.211.712.040.20K2O10.2510.327.923.553.323.172.323.050.30Total97.9698.9699.82100.3398.2499.4599.8594.7897.61	SiO ₂	64.74	64.96	65.43	67.72	68.14	65.52	57.10	65.03	96.42
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TiO ₂	0.08	0.03	0.08	0.54	0.45	0.37	0.92	0.62	b.d. ^b
FeO1.150.281.053.152.532.716.572.550.16MnO0.02b.d. ^b 0.020.070.060.060.090.05b.d. ^b MgO0.390.030.441.301.061.002.740.940.06CaO0.381.274.626.667.007.1015.158.680.32Na2O2.142.612.052.091.822.211.712.040.20K2O10.2510.327.923.553.323.172.323.050.30Total97.9698.9699.82100.3398.2499.4599.8594.7897.61	AI_2O_3	18.81	19.46	18.21	15.25	13.86	17.31	13.25	11.82	0.15
MnO 0.02 $b.d.^b$ 0.02 0.07 0.06 0.06 0.09 0.05 $b.d.^b$ MgO 0.39 0.03 0.44 1.30 1.06 1.00 2.74 0.94 0.06 CaO 0.38 1.27 4.62 6.66 7.00 7.10 15.15 8.68 0.32 Na_2O 2.14 2.61 2.05 2.09 1.82 2.21 1.71 2.04 0.20 K_2O 10.25 10.32 7.92 3.55 3.32 3.17 2.32 3.05 0.30 Total 97.96 98.96 99.82 100.33 98.24 99.45 99.85 94.78 97.61	FeO	1.15	0.28	1.05	3.15	2.53	2.71	6.57	2.55	0.16
MgO 0.39 0.03 0.44 1.30 1.06 1.00 2.74 0.94 0.06 CaO 0.38 1.27 4.62 6.66 7.00 7.10 15.15 8.68 0.32 Na ₂ O 2.14 2.61 2.05 2.09 1.82 2.21 1.71 2.04 0.20 K ₂ O 10.25 10.32 7.92 3.55 3.32 3.17 2.32 3.05 0.30 Total 97.96 98.96 99.82 100.33 98.24 99.45 99.85 94.78 97.61	MnO	0.02	b.d. ^b	0.02	0.07	0.06	0.06	0.09	0.05	b.d. ^b
CaO 0.38 1.27 4.62 6.66 7.00 7.10 15.15 8.68 0.32 Na2O 2.14 2.61 2.05 2.09 1.82 2.21 1.71 2.04 0.20 K2O 10.25 10.32 7.92 3.55 3.32 3.17 2.32 3.05 0.30 Total 97.96 98.96 99.82 100.33 98.24 99.45 99.85 94.78 97.61	MgO	0.39	0.03	0.44	1.30	1.06	1.00	2.74	0.94	0.06
Na2O 2.14 2.61 2.05 2.09 1.82 2.21 1.71 2.04 0.20 K2O 10.25 10.32 7.92 3.55 3.32 3.17 2.32 3.05 0.30 Total 97.96 98.96 99.82 100.33 98.24 99.45 99.85 94.78 97.61	CaO	0.38	1.27	4.62	6.66	7.00	7.10	15.15	8.68	0.32
K2O 10.25 10.32 7.92 3.55 3.32 3.17 2.32 3.05 0.30 Total 97.96 98.96 99.82 100.33 98.24 99.45 99.85 94.78 97.61	Na ₂ O	2.14	2.61	2.05	2.09	1.82	2.21	1.71	2.04	0.20
Total 97.96 98.96 99.82 100.33 98.24 99.45 99.85 94.78 97.61	K ₂ O	10.25	10.32	7.92	3.55	3.32	3.17	2.32	3.05	0.30
10101 57.50 56.50 55.62 100.55 56.24 55.45 55.65 54.76 57.01	Total	97.96	98.96	99.82	100.33	98.24	99.45	99.85	94.78	97.61

593 **Table 3** Major element oxide composition obtained via EPMA analysis of trinitite

^aLocations in Figure 3

^bBelow detection.

	L1 ^a	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11
La	1.4 ± 0.1	22.8 ± 0.7	25.3 ± 0.6	39.0 ± 0.9	1.3 ± 0.2	16.0 ± 0.5	32.6 ± 0.8	38 ± 1	33.6 ± 0.8	n.m. ^c	n.m.
Ce	2.5 ± 0.2	43 ± 1	48 ± 1	74 ± 1	5.3 ± 0.6	32.7 ± 0.9	65 ± 1	80 ± 2	69 ± 1	n.m.	n.m.
Pr	0.15 ± 0.04	5.4 ± 0.2	5.7 ± 0.2	8.2 ± 0.3	0.4 ± 0.1	3.7 ± 0.2	7.1 ± 0.3	8.6 ± 0.4	8.0 ± 0.3	n.m.	n.m.
Nd	0.57 ± 0.2	20 ± 2	24 ± 2	32 ± 2	1.2 ± 0.4	13 ± 1	27 ± 2	29 ± 2	28 ± 2	n.m.	n.m.
Sm	0.2 ± 0.1	4.0 ± 0.5	4.8 ± 0.5	4.8 ± 0.6	0.3 ± 0.1	2.4 ± 0.4	4.5 ± 0.5	4.8 ± 0.6	5.8 ± 0.6	n.m.	n.m.
Eu	0.7 ± 0.1	0.9 ± 0.1	1.3 ± 0.2	0.7 ± 0.1	0.04 ± 0.03	0.6 ± 0.1	1.2 ± 0.1	1.1 ± 0.2	1.2 ± 0.2	n.m.	n.m.
Gd	0.3 ± 0.2	3.2 ± 0.4	4.5 ± 0.5	3.8 ± 0.5	0.4 ± 0.1	2.3 ± 0.3	3.2 ± 0.4	4.2 ± 0.5	5.0 ± 0.5	n.m.	n.m.
Tb	0.05 ±0.02	0.57 ± 0.06	0.73 ± 0.06	0.42 ± 0.06	0.04 ± 0.02	0.40 ± 0.05	0.62 ± 0.06	0.56 ± 0.07	0.83 ± 0.08	n.m.	n.m.
Dy	0.28 ± 0.09	2.9 ± 0.3	4.8 ± 0.3	2.6 ±0.3	0.3 ± 0.1	3.1 ± 0.3	4.7 ± 0.3	3.9 ± 0.4	5.5 ± 0.4	n.m.	n.m.
Но	0.06 ± 0.01	0.60 ± 0.05	1.03 ± 0.06	0.49 ± 0.04	0.04 ± 0.01	0.60 ± 0.04	0.95 ± 0.05	0.87 ± 0.06	1.1 ± 0.06	n.m.	n.m.
Er	0.17 ± 0.04	1.9 ± 0.1	3.2 ± 0.2	1.5 ± 0.1	0.16 ± 0.05	2.0 ± 0.1	3.3 ± 0.2	2.7 ± 0.2	3.4 ± 0.2	n.m.	n.m.
Tm	0.04 ± 0.01	0.29 ± 0.03	0.48 ± 0.04	0.20 ± 0.03	0.02 ± 0.01	0.35 ± 0.03	0.57 ± 0.04	0.45 ± 0.04	0.54 ± 0.04	n.m.	n.m.
Yb	0.22 ± 0.06	2.0 ± 0.2	3.3 ± 0.2	1.4 ± 0.1	0.20 ± 0.06	2.2 ± 0.2	4.1 ± 0.2	3.5 ± 0.2	4.0 ± 0.2	n.m.	n.m.
Lu	0.04 ± 0.01	0.39 ± 0.04	0.50 ± 0.04	0.24 ± 0.03	0.02 ± 0.01	0.38 ± 0.04	0.60 ± 0.04	0.48 ± 0.04	0.57 ± 0.04	n.m.	n.m.
²³⁸ U	n.m.	43.0 ± 0.4	46.5 ± 0.3	n.m.	n.m.	n.m.	n.m.	41.8 ± 0.4	276 ± 2	29.1 ± 0.2	27.8 ± 0.3
²³⁹ Pu ^b	n.m.	0.36 ± 0.04	2.22 ± 0.07	n.m.	n.m.	n.m.	n.m.	1.70 ± 0.07	0.56 ± 0.1	0.56 ± 0.03	0.59 ± 0.04
²⁴⁰ Pu ^b	n.m.	0.012 ± 0.006	0.036 ± 0.009	n.m.	n.m.	n.m.	n.m.	0.06 ± 0.01	0.02 ± 0.02	0.018 ± 0.006	0.009 ± 0.005
²⁴⁰ Pu/ ²³⁹ Pu	n.m.	0.034 ± 0.018	0.016 ± 0.004	n.m.	n.m.	n.m.	n.m.	0.033 ± 0.008	0.027 ± 0.028	0.033 ± 0.011	0.015 ± 0.008

Table 4 Trace element results obtained via LA-ICP-MS with concentrations in µg/g obtained via ablation yield normalization

^aLocations Figure 3

^bPu concentration calculated based on assumed similar ablation and ionization yields as ²³⁸U

600 ^cNot measured: No data collected for these elements

¹⁴⁰Ce (V) 142Nd/144Nd 143Nd/144Nd 145Nd/144Nd 148Nd/144Nd ¹⁵⁰Nd/¹⁴⁴Nd ¹⁴⁷Sm (V) Sample Nd-Ames Metal (n=18)^a 1.141863 0.512151 0.348403 0.241543 0.236353 -0.000053 0.000018 0.000012 0.000010 0.000009 n/a n/a 2σ BHVO-2 (n=2)^a 1.141884 0.512995 0.348389 0.241542 0.236346 0.0013 0.000009 0.000041 0.000033 0.000003 0.00003 0.000002 0.0002 0.000005 2σ Trinitite (n=1)^a 0.512164 0.348474 0.236342 0.0012 1.141751 0.241567 0.000005 0.000025 0.000009 0.000005 0.000007 0.000010 0.0002 0.000014 2σ ¹⁵⁵Gd/¹⁶⁰Gd ¹⁵⁶Gd/¹⁶⁰Gd ¹⁵⁷Gd/¹⁶⁰Gd ¹⁴⁷Sm (V) ¹⁶²Dy (V) ¹⁵⁸Gd/¹⁶⁰Gd Sample Gd Solution (n=20) 0.676819 0.9361 0.715875 1.135906 --2σ 0.000042 n/a 0.000033 0.000040 n/a n/a BHVO-2 (n=2)^b 0.676813 0.9361 0.715884 1.135883 0.00006 0.00022 0.000012 0.000028 0.00001 0.000017 n/a 0.00001 2σ Trinitite (n=1)^b 0.677097 0.936492 0.715880 1.136301 0.00004 0.00210 0.000064 0.000070 0.000042 0.000044 0.00002 0.00020 2σ_

602 **Table 5** Nd and Gd isotopic ratios for standards and trinitite sample

603 ^aNd normalized to 146 Nd/ 144 Nd = 0.7219

⁶⁰⁴ ^bGd normalized to 156 Gd/ 160 Gd = 0.9361 using standard-sample bracketing

	Independent Yield (%)	Cumulative Yield (%)	Initial Isotope	Lifetime (minutes)
¹⁴² Nd	2±1 x10 ⁻¹⁰	1.2±0.7 x10 ⁻⁶	¹⁴² Pr	2x10 ³
¹⁴⁴ Nd	2.8±0.9 x10 ⁻⁹	3.69±0.03	¹⁴⁴ Ba	6x10 ⁵
¹⁴⁵ Nd	4±2 x10 ⁻⁶	3.00±0.02	¹⁴⁵ La	3x10 ¹
¹⁴⁶ Nd	8±5 x10 ⁻⁵	2.46±0.01	¹⁴⁶ Ce	3x10 ¹
¹⁴⁸ Nd	7±4 x10 ⁻³	1.658±0.006	¹⁴⁸ Ce	3x10 ⁰
¹⁵⁰ Nd	1.0±0.6 x10 ⁻¹	0.993±0.005	¹⁵⁰ Pr	1x10 ⁻¹
¹⁵⁵ Gd	3±2 x10 ⁻⁷	0.21±0.02	¹⁵⁵ Pm	4x10 ⁶
¹⁵⁶ Gd	7±2 x10 ⁻⁷	0.154±0.006	¹⁵⁶ Pm	3x10 ⁴
¹⁵⁷ Gd	3±2 x10 ⁻⁵	0.106±0.008	¹⁵⁷ Sm	1x10 ³
¹⁵⁸ Gd	2±1 x10 ⁻⁴	0.06±0.01	¹⁵⁸ Sm	5x10 ²
¹⁶⁰ Gd	1.1±0.7 x10 ⁻³	0.016±0.005	¹⁶⁰ Eu	9x10 ⁻¹

606 607
Table 6 List of independent and cumulative yield of lanthanoids of interest [8]